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A One-Dimensional Model of Sedimentation Using Darcy’s 
law 

J. R. BLAKE, P. M. COLOMBERA,* and J. H. KNIGHT 
CSIRO DIVISION OF MATHEMATICS AND STATISTICS 
CANBERRA CITY, A.C.T. 2601, AUSTRALIA 

Abstract 

Darcy’s law together with the mass conservation equation is used to predict 
concentration profiles in a one-dimensional sedimenting column. Analytic 
solutions are obtained for two special cases of the diffusivity and hydraulic 
conductivity. For derived physical parameters the theoretical predictions 
are compared against experimental results from t h e  sedimenting columns. 
each of different height. The predictions compare favorably with observations, 
indicating that this macroscopic approach of Darcy’s law should be further 
developed, both numerically and into more than one spatial dimension. 

INTRODUCTION 

The separation of solid and liquid on a very large scale is one of the 
mining industry’s major problems. Attempts to model the sedimentation 
process have had limited success. One of the limiting factors has been 
our inability to obtain accurate, independent values for the physical 
parameters over the entire range of observed concentrations. These 
physical properties determine the rates of the sedimentation process. 
Smiles (6) has experimentally determined values of the hydraulic con- 
ductivity and diffusivity at higher concentrations. However, at the dilute 
end of the range, where interaction effects of a colloidal suspension are 
still important, reliable estimates of the hydraulic conductivity and dif- 

*Present address: Alcoa of Australia Ltd., P.O. Box 161, Kwinana, Western Australia 
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292 BLAKE, COLOMBERA, A N D  KNIGHT 

fusivity are not available. In this paper a one-dimensional model of 
sedimentation that incorporates Darcy’s law in the mass conservation 
equations is compared against results from sedimentation experiments 
in tall Plexiglas columns. ‘The vertical dimension is very much greater 
than the horizontal one, so we are approximating one-dimensional 
sedimentation in the laboratory. Needless to say, this is far removed from 
the geometry of the shallow sedimentation ponds or lakes used in industry, 
but nevertheless it does give us the opportunity to observe if the physical 
parameters we obtain are ineaningful and can lead to useful theoretical 
models. 

In this paper the equations relevant to water infiltration in swelling 
porous media are applied to the essentially inverse problem of calculsting 
concentration profiles in a (contracting) sedimenting column. In a previous 
paper, Blake and Colombera (1) compared experimentally determined 
concentration profiles with those from a linearized form of the equations. 
Here we extend the analysis to a nonlinear form of the equations, com- 
paring the predictions with the previous linear solutions and further 
experimental results. These analytic solutions will prove valuable as 
guidelines to the full nonlinear equations once the physical parameters 
(hydraulic conductivity and diffusivity) are known accurately over the 
entire range of concentrations. 

THEORY 

The theory used in our analysis has been developed for water flow in 
swelling soils by Smiles and Rosenthal (2) and Philip (3-5), and for sedi- 
mentation by Smiles (6, 7) and Blake and Colombera (1). The analysis 
is based on Darcy’s law, 

u = -K(9) a o p z  (1) 

where u is the volume flux of water relative to the particles, K is the 
hydraulic conductivity which is a function of the moisture ratio 9 
(= volume of liquid/volurrie of solids), @ is the potential, and z is the 
vertical coordinate (z = 0, corresponds to the base of the sedimenting 
column). The analysis is simplified in systems which are changing their 
length if we change to Lagrangian coordinates. The relation between the 
Lagrangian coordinate, rn, .and z, the physical space dimension, is 

dm/dz = (1 + $)-I = 4 
where 4 is the conventional concentration (volume of solid/total volume). 
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ONE-DIMENSIONAL MODEL OF SEDIMENTATION 293 

Continuity now requires that 

It is appropriate to split up the potential @ into two parts, those due to 
repulsive forces between particles Y and those due to gravity. Hence, we 
define 

@ = \Y + (7, - 1)(M - m) (4) 

where y, is the specific gravity of the solid. We will assume, and experi- 
mental evidence (6) suggests, that Y is a function of 9 in the case of the 
red mud slurries used in our experiments. For this assumption to be valid 
a near homogeneous particle size is required with no sorting of particles 
during settling. On substitution of (4) into (3), we obtain the following 
nonlinear Fokker-Planck equation, 

where 

and 
D, = K,dY/dS 

K, = K(9)/(1 + 9) 

The subscript m implies the diffusivity D, and hydraulic conductivity K, 
are taken relative to the Lagrangian coordinates. At the base of the column 
(m = 0) we apply the zero flux condition, 

K, a@pm = 0, aslam - (yc - 1)K, = 0, m > 0, t > 0 (6) 
The boundary condition at the interface between the clear liquid and 

sedimenting column has not been satisfactorily resolved. Experimental 
physicists would argue that the condition is 

Y = 0, m = M ,  t > 0 

However, physically this ignores the very thin Brownian motion layer 
that exists above the interface where there is a rapid relative change in Y ,  
and mathematically it also creates problems because 9 must then be 
singular at m = M (i.e., 9 -, a). Ignoring the Brownian motion layer, 
the interface may be regarded both experimentally and physically to be 
a sharp, distinct boundary in our experiments. If any particle is displaced 

(7) 
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above the interface, it will immediately catch up as the velocity ~ ( 9 ~ )  
is greater than ~ ( 9 ~ )  for 9, > 9,. It is also observed that the moisture ratio 
9 at the interface remains constant at the initial value for most of the 
sedimentation process, at least until the effects of the zero-flux condition 
at the base are felt at the top. Thus both the initial ( t  = 0) and upper 
boundary condition (m = M, t > 0) will be 

I9 = 9, (8) 

for the theoretical models in this paper. 
The one-dimensional sedimentation problem is now mathematically 

formulated in terms of Eq. (5a), with boundary and initial conditions in 
Eqs. (6)  and (8), provided we can experimentally or theoretically deter- 
mine K, and D, over the whole range of 9. In the next section we will 
consider two special cases alf K, and D,. 

TWO ANALYTIC MODELS 

The first model corresponds to the case when Eq. (5a) is linearized and 
we have the special values 

D, = Do, K ,  = ko(9 - 90) (9) 

The second model corresponds to Eq. (5a) reducing to Burger's equation 
[see Hopf (8), Cole (9), Whitliam (lo)]. In this case we have the expressions 

The solution for the case delined in Eq. (9) has been obtained previously 
( I ) .  The series solution for the moisture ratio, 9, physical space, z, and 
height of clear liquid at the top, Q, for this case is 

8(m, t )  = go + (9, - &,) e-zfi(l-m') c 
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ONE-DIMENSIONAL MODEL OF SEDIMENTATION 295 

where 

m’ = m/M,  t‘ = DtlM‘, /3 = (y ,  - l)koM/2D, 

and 

a, cot CI, + p = 0; n = 1,2,3,* * (1 1 4  
The volume of clear liquid at the top is obtained by subtracting the present 
height of the column from the initial height Z ,  [= M(l + 9,,)]. 

In the second model (Burger’s equation), the series solution is expressed 
as 

where 

and 

In this case 6 = (9, - 91)k,(y, - 1)M/2D1, and again CI, satisfies Eq. 
(1 Id) but with 6 replacing p in the expression. For computational purposes 
we find Eq. (I2a) does not converge very quickly for small times. We 
therefore use the short-time expansion 

0 + 0, + * * -  o = 0  (134 
where 

and 
2 - m’ (2 - m’)’ 

0, = -erfc[ 2Ji’ ] + 2 ( 3 ” ’  exp [ - 4t l  ] 
+ [1 - 6(2 - m’) - 26’t’I exp [6(2 - m’) + P t ’ ]  

x erfc “ZJ; + 6t’J 
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296 BLAKE, COLOMBERA, AND KNIGHT 

0, corresponds to the semi-infinite solution with a zero-flux boundary 
condition, while 0,  corresponds to the first reflection about the interface 
between the clear liquid and sediment. 

We now have analytic expressions for the moisture ratio, or concentra- 
tion, 4, where 

4(m, t )  = ( I  + 9(m’, t))-’ 

and real space coordinate z(rn, t )  such that we can predict concentration 
profiles provided we have estimates for Di, ki,  and 9i (i = 1, 2). In the 
next section we outline a procedure for obtaining these values. 

PARAMETER EST1 MAT10 N 

In Fig. 1 the dependence of K, and D,  on 9 are shown for previously 
determined experimental values (6) and also for the values used in the two 
models of this paper. The method of deriving them will be discussed 
later in this section. It should be emphasized that the experimentally 
determined values of K, anti D, of Smiles (6) are only valid in the range 
2 I 9 I 6 .  Extrapolated values of the log/linear plot are shown on the 
diagram. 

To predict the concentration profiles we need estimates of the parameters 
So, k,, and Do in the linear rnodel and 9,, k , ,  and D, in the Burger model. 
The estimation procedure we now outline has the disadvantage that it is 
experiment specific in that t.he parameters vary from one experiment to 
another. On the other hand, it does enable us to predict the concentration 
profiles very well qualitatively and reasonably well on a quantitative basis. 
This is not the case for infiltration into soils which have nonlinear proper- 
ties, where even qualitatively the linear models predict incorrect shapes. 
We estimate the parameters from ( 1 )  the initial linear rate of decrease of 
the interface between the clear liquid and sediment, (2) the equilibrium 
height of the column, and (3) the equilibrium moisture ratio at the base 
of the column (rn = 0). This gives us three conditions in three unknowns. 
The three parameters are then obtained by using Newton’s method. 

If we knew the functional dependence of K, and D, on 9 over the com- 
plete range of 9, we could easily obtain the required values for conditions 
( l ) ,  (2), and (3) above. However, in practice, we must often obtain these 
values from experimental observation on the columns. In the near future 
we hope to have independent methods of estimating these parameters. 

Thus for short times the initial collection of clear water varies linearly 
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ONE-DIMENSIONAL MODEL OF SEDIMENTATION 297 

with time as follows: 

Here equations labeled with (a) refer to the linear model, (b) to the Burger 
model. The equilibrium volume of clear liquid at the top of the column, 
Q,, gives the following relationships: 

and 

6 Q ,  = M(9, - 91) 1 - + "I 
Likewise the equilibrium moisture ratio at the base, 9,, yields 

9, = 9, + (9, - g,)e-'@ 
and 

In the next section we compare the solutions from the two mathematical 
models against experiments on a red mud slurry carried out in three 
Plexiglas columns of different heights. 

RES U LTS 

Experimental details relevant to this paper are outlined in Ref. 1. Briefly, 
the sedimenting column of a red mud slurry from the alumina extraction 
process was contained within three elongated Plexiglas columns of dif- 
fering dimensions. The sediment was gently stirred to obtain a constant 
concentration throughout the length of the column and then allowed to 
settle. The concentration profile as a function of height and time was 
obtained by the y-ray attenuation method (1, 11). 
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In Fig. 1 the values of K,,, and D, used in the linear and Burger model 
are plotted against 9 for the case of the long column. The asterisks cor- 
respond to the three values of K,(9,) given in Table 1. It can be seen for this 
example that the hydraulic: conductivity (9 I 11.3) and diffusivity are 
smaller in the Burger model than in the linear model. Comparing these 
results to the experimental values of Smiles (6), it appears that the linear 
model is a better approximation than the Burger model. In fact, a combina- 
tion of the K, obtained here and from Smiles (6) could be a useful starting 
representation for numerical models. It should be noted that the diffusivi- 
ties used in the theoretical models come from the high concentration 
end of the range. 

Results for the three columns are shown in Figs. 2A, 2B, and 2C for 
different times throughout the sedimentation process. Details on param- 
eters are given in Table 1. 

As we are summing easily calculable analytical functions, the computa- 
tional time is very small indeed (typically 0.3 to 0.5 sec CP time on the 
CSIRO CYBER 76 for each set of experiments shown in Fig. 2). However, 
the number of terms required in the series solutions to obtain convergence 
(Eqs. l la ,  l lb ,  12a, 12b) is) dependent on the time the experiment has 
been running; for smaller times a larger number of terms are required, 
or in the case of the Burger model the short-time asymptotics (Eqs. 13a, 
13b, 13c) were preferred. 

Bearing in mind that we ,are approximating nonlinear expressions for 

TABLE 1 
Observed and Predicted Values of the Parameters in the Three Columns 

~ ~~ ~~ 

Column length (Z.) 

Short (0.35 m) Medium (0.86 m) Long (1.86 m) 

13.2 
2.87 x lO-'m/sec 
3.1 
5.5 
0.0243 m 
0.167 m 

5.4 
3.7 x 10-8m/sec 
2.0 x 10-lomz,'sec 
5.1 
8.8 x m/sec 
8.8 x lo-" mZ,%ec 

12.6 
2.18 x 10-7m/sec 
3.1 
5.9 
0.0637 m 
0.411 m 

5.9 
3.2 x m/sec 
1.6 x lo-' m2/sec 
5.8 
9.5 x lo-' m/sec 
4.4 x lo-" m2/sec 

11.3 
1.84 x 10-7m/sec 
3.1 
4.6 
0.151 m 
0.97 m 

4.6 
2.7 x 10-8m/sec 
3.6 x mZ/sec 
4.5 
8.0 x lO-'m/sec 
1.0 x 10-'0m2/sec 
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FIG. 1. Plots of the hydraulic conductivity K ,  and diffusivity D, against 
moisture ratio 9 from experimentally determined values (6) and those derived in 
the two models (linear and Burger) of this paper. The asterisks (*) correspond 
to the values of K,(9.) listed in Table 1. The range of values of 9 in the experi- 

ments referred to  in this paper is shown at the bottom of the diagram. 
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the diffusivity and hydraulic conductivity by an “averaged” diffusivity 
and a hydraulic conductivity which is either a linear or quadratic function 
of moisture ratio in our models, the results are reasonable. This is not 
so surprising because we are choosing Km(9,) exactly and the gravitational 
component dominates the early parts of the sedimentation process. 
Furthermore, the diffusivity is derived from the balance of forces in 
the equilibrium profile ; and provided the equilibrium concentration is 
relatively constant throughout the profile, an “average” diffusivity will 
be reasonable. Figure 1 confirms this claim as the value of the “averaged” 
diffusivity is at the highly concentrated end of the range (i.e., low values 

As expected, for early times (first diagram in Fig. 2A and the first two 
in 2B and 2C) both models predict the profile extremely well. However, 
in the middle stages of the process the Burger model appears to be quanti- 
tatively more accurate, but the linear model has qualitatively the correct 
shape. This is due to the faster decrease in the hydraulic conductivity for 
the Burger model while the diffusivity is held constant, hence the increase 
in the concentration profile is spread out over a greater height because 
of the balance between the gravitational and diffusive terms in Eq. (5a). 

The models presented here are part of an initial study of the mechanics 
of sedimenting colloidal particles. Although the models are useful, the 
full nonlinear equations with experimentally determined diffusivities 
and hydraulic conductivities will need to be solved (numerically) to as- 
certain the full usefulness of this approach to modeling sedimentation. 

of 9). 

SYMBOLS 

diffusivity in Burger model 
diffusivity in Lagrangian coordinates 
diffusivity in linear model 
coefficient of conductivity in Burger model 
hydraulic conductivity 
hydraulic conductivity in Lagrangian coordinates 
coefficient of conductivity in linear model 
Lagrangian coordinate 
total mass length of column 
m/M,  dimensionless Lagrangian coordinate length 
volume of clear liquid at top 
volume of clear liquid at top of the column at equilibrium 
time 
Dt/M2,  nondimensional time 
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304 BLAKE, COLOMBERA, AND KNIGHT 

u 
z vertical spatial coordinate 

volume flux of water relative to particles 

Zn initial length of column 

Greek 

solution of transcendental equation 

01, cot 01, + p = 0 
or 

C1,c0tan + 6 = 0 

(yc - l)koM/2D0, a nondimensional parameter 
specific gravity of solid component 
(9, - 9,)k,(yc - 1)M/.2DI, a dimensionless parameter 
moisture ratio (volume of liquid/volume of solid) 
equilibrium moisture ratio at base of column 
parameter in hydraulic conductivity in Burger model 
parameter in hydraulic conductivity in linear model 
initial moisture ratio 
used in Burger equation substitution 
first term in short time expansion of 0 
second term in short time expansion of 0 
l/(l + 9) concentration (volume of solid/total volume) 
potential 
potential to repulsive forces between particles 
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