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A One-Dimensional Model of Sedimentation Using Darcy’s
Law

J. R. BLAKE, P. M. COLOMBERA,* and J. H. KNIGHT

CSIRO DIVISION OF MATHEMATICS AND STATISTICS
CANBERRA CITY, A.C.T. 2601, AUSTRALIA

Abstract

Darcy’s law together with the mass conservation equation is used to predict
concentration profiles in a one-dimensional sedimenting column. Analytic
solutions are obtained for two special cases of the diffusivity and hydraulic
conductivity. For derived physical parameters the theoretical predictions
are compared against experimental results from three sedimenting columns,
each of different height. The predictions compare favorably with observations,
indicating that this macroscopic approach of Darcy’s law should be further
developed, both numerically and into more than one spatial dimension.

INTRODUCTION

The separation of solid and liquid on a very large scale is one of the
mining industry’s major problems. Attempts to model the sedimentation
process have had limited success. One of the limiting factors has been
our inability to obtain accurate, independent values for the physical
parameters over the entire range of observed concentrations. These
physical properties determine the rates of the sedimentation process.
Smiles (6) has experimentally determined values of the hydraulic con-
ductivity and diffusivity at higher concentrations. However, at the dilute
end of the range, where interaction effects of a colloidal suspension are
still important, reliable estimates of the hydraulic conductivity and dif-
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fusivity are not available. In this paper a one-dimensional model of
sedimentation that incorporates Darcy’s law in the mass conservation
equations is compared against results from sedimentation experiments
in tall Plexiglas columns. The vertical dimension is very much greater
than the horizontal one, so we are approximating one-dimensional
sedimentation in the laboratory. Needless to say, this is far removed from
the geometry of the shallow sedimentation ponds or lakes used in industry,
but nevertheless it does give us the opportunity to observe if the physical
parameters we obtain are meaningful and can lead to useful theoretical
models.

In this paper the equations relevant to water infiltration in swelling
porous media are applied to the essentially inverse problem of calculating
concentration profiles in a (contracting) sedimenting column. In a previous
paper, Blake and Colombera (/) compared experimentally determined
concentration profiles with those from a linearized form of the equations.
Here we extend the analysis to a nonlinear form of the equations, com-
paring the predictions with the previous linear solutions and further
experimental results. These analytic solutions will prove valuable as
guidelines to the full nonlinear equations once the physical parameters
(hydraulic conductivity and diffusivity) are known accurately over the
entire range of concentrations. '

THEORY

The theory used in our analysis has been developed for water flow in
swelling soils by Smiles and Rosenthal (2) and Philip (3-5), and for sedi-
mentation by Smiles (6, 7) and Blake and Colombera (I). The analysis
is based on Darcy’s law,

v = —K(9) od/oz )

where v is the volume flux of water relative to the particles, K is the
hydraulic conductivity which is a function of the moisture ratio
(= volume of liquid/volume of solids), ® is the potential, and z is the
vertical coordinate (z = 0, corresponds to the base of the sedimenting
column). The analysis is simplified in systems which are changing their
length if we change to Lagrangian coordinates. The relation between the
Lagrangian coordinate, m, and z, the physical space dimension, is

dmidz = (1 + 9)" ! = ¢ )

where ¢ is the conventional concentration (volume of solid/total volume).
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Continuity now requires that

95 _ 3 [ K®) 0 -
ot omll + 9 om

It is appropriate to split up the potential @ into two parts, those due to

repulsive forces between particles ¥ and those due to gravity. Hence, we

define

O =¥+ @y, — DM —m) @

where vy, is the specific gravity of the solid. We will assume, and experi-
mental evidence (6) suggests, that ¥ is a function of 3 in the case of the
red mud slurries used in our experiments. For this assumption to be valid
a near homogeneous particle size is required with no sorting of particles
during settling. On substitution of (4) into (3), we obtain the following
nonlinear Fékker-Planck equation,

R (5)
where
D, =K, d¥/d3 (5b)
and
K, =K®)/1+ 9 (5c)

The subscript m implies the diffusivity D,, and hydraulic conductivity K,
are taken relative to the Lagrangian coordinates. At the base of the column
{m = 0) we apply the zero flux condition,

K, 8®/om = D, 8%/om — (9, — DK, =0, m>0,¢>0 (6)

The boundary condition at the interface between the clear liquid and
sedimenting column has not been satisfactorily resolved. Experimental
physicists would argue that the condition is

Y=0,m=Mt>0 0)

However, physically this ignores the very thin Brownian motion layer
that exists above the interface where there is a rapid relative change in ¥,
and mathematically it also creates problems because $ must then be
singular at m = M (i.e., 3 —» ). Ignoring the Brownian motion layer,
the interface may be regarded both experimentally and physically to be
a sharp, distinct boundary in our experiments. If any particle is displaced
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above the interface, it will immediately catch up as the velocity v(3,)
is greater than v(3,) for 9, > 3,. It is also observed that the moisture ratio
3 at the interface remains constant at the initial value for most of the
sedimentation process, at lzast until the effects of the zero-flux condition
at the base are felt at the top. Thus both the initial (# = 0) and upper
boundary condition (m = M, t > 0) will be

9=9, ®

for the theoretical models in this paper.

The one-dimensional sedimentation problem is now mathematically
formulated in terms of Eq. (5a), with boundary and initial conditions in
Egs. (6) and (8), provided we can experimentally or theoretically deter-
mine K, and D,, over the whole range of 3. In the next section we will
consider two special cases of K,, and D,,.

TWO ANALYTIC MODELS

The first model corresponds to the case when Eq. (5a) is linearized and
we have the special values

Dm = DOs Km = kO('9 - ‘90) (9)

The second model corresponds to Eq. (5a) reducing to Burger’s equation
[see Hopf (8), Cole (9), Whitham (J0)]. In this case we have the expressions

Dm = Dl’ Km = %kl('9 - ‘91)2 (10)

The solution for the case defined in Eq. (9) has been obtained previously
(I). The series solution for the moisture ratio, 3, physical space, z, and
height of clear liquid at the top, @, for this case is

S(m, t) = 190 =+ (9" _ 80)[6“2ﬁ(1—m»)
a, sin o, (1 — m')e™ @8

— 4pem % (@ + BI(1 + B) cos o, — @, sin oc,,]] (112)

n=1

e %

z(m, t) = M[(l +3p)m" + (9, — 90){—27 (e*™ — 1) — 4pef™

18

n=1

afa, cos a,(1 — m") + Bsina,(1 — m')]e”Cn* 89 .
8 (@2 + BAHI(1 + P) cos o, — a, sin a,] (11b)

o@)= M1+ 3,) —z(M, 1) (11¢)
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where
m =m/M, t' = Dt{M? B = (y. — DkoM/2D,
and
a,cota, + f =0; n=1273,..- (11d)

The volume of clear liquid at the top is obtained by subtracting the present
height of the column from the initial height Z, [= M(1 + 8,).

In the second model (Burger’s equation), the series solution is expressed
as

3, -9, 00/om

9=9, - - (122)
where
1+ - m) , & siname =Y
=TT P ligrrery P
and
2m, t) = M[(l + 9)m — (‘%%‘9‘) log © (m, z)] (12¢)

In this case 6 = (9, — $))k(y. — )M/2D,, and again «, satisfies Eq.
(11d) but with § replacing f in the expression. For computational purposes
we find Eq. (12a) does not converge very quickly for small times. We
therefore use the short-time expansion

®=®0+®1+... (13&)
where
@0 = e~ dm HO _ %eazt'—am' erfcl: — 5\/;]
\/
— 3P orfe [2—"1\7-;7 + 5\/7’] + erfc I:%] (13b)
and

2 — m' t’ 1/2 (2 — m’)2
®, = —erfc [—E\Tt-'-] + 2(;) exp[—T]

+[1-6Q - m’) — 28%t"]exp [6(2 — m') + 8%t]

P erfc[ 2\/t + 6t] (13¢)
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O, corresponds to the semi-infinite solution with a zero-flux boundary
condition, while ®, corresponds to the first reflection about the interface
between the clear liquid and sediment.

We now have analytic expressions for the moisture ratio, or concentra-
tion, ¢, where

dp(m, 1) = (1 + ', )~ !

and real space coordinate z{(m, t) such that we can predict concentration
profiles provided we have estimates for D;, k;, and 3; (i = 1, 2). In the
next section we outline a procedure for obtaining these values.

PARAMETER ESTIMATION

In Fig. 1 the dependence of K, and D,, on § are shown for previously
determined experimental values (6) and also for the values used in the two
models of this paper. The method of deriving them will be discussed
later in this section. It should be emphasized that the experimentally
determined values of K,, and D,, of Smiles (6) are only valid in the range
2 < 9 < 6. Extrapolated values of the log/linear plot are shown on the
diagram.

To predict the concentration profiles we need estimates of the parameters
90, ko, and Dy in the linear model and 3., k,, and D, in the Burger model.
The estimation procedure we now outline has the disadvantage that it is
experiment specific in that rhe parameters vary from one experiment to
another. On the other hand, it does enable us to predict the concentration
profiles very well qualitatively and reasonably well on a quantitative basis.
This is not the case for infiltration into soils which have nonlinear proper-
ties, where even qualitatively the linear models predict incorrect shapes.
We estimate the parameters from (1) the initial linear rate of decrease of
the interface between the clear liquid and sediment, (2) the equilibrium
height of the column, and (3) the equilibrium moisture ratio at the base
of the column (m = 0). This gives us three conditions in three unknowns.
The three parameters are then obtained by using Newton’s method.

If we knew the functional dependence of K,, and D,, on 3 over the com-
plete range of 3, we could easily obtain the required values for conditions
(1), (2), and (3) above. However, in practice, we must often obtain these
values from experimental observation on the columns. In the near future
we hope to have independent methods of estimating these parameters.

Thus for short times the initial collection of clear water varies linearly
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with time as follows:

0 ~ (v. — DKu(8)1 ~ (. — Dko(3, — 90}t (142)
~ 3. — Dky(8, — 9))% (14b)
Since we can obtain K,(8,) from the experiments, we have |
ko(8y — 90) = Ku(8) (152)
and
1k (8, — 907 = Ku(S)) (15b)

Here equations labeled with (a) refer to the linear model, (b) to the Burger
model. The equilibrium volume of clear liquid at the top of the column,
Q. gives the following relationships:

1
Q0 = M(S, - -90)[1 - 5/—3(1 - e’z”)] (16a)
and
log(1 + 6
0. - M@, - o)1 - EGET] (16b)
Likewise the equilibrium moisture ratio at the base, 9., yields
8, =9 + (8, — 8p)e™ (17a)
and
(‘gn - ‘91)
8§, =9, + 153 (17v)

In the next section we compare the solutions from the two mathematical
models against experiments on a red mud slurry carried out in three
Plexiglas columns of different heights.

RESULTS

Experimental details relevant to this paper are outlined in Ref. /. Briefly,
the sedimenting column of a red mud slurry from the alumina extraction
process was contained within three elongated Plexiglas columns of dif-
fering dimensions. The sediment was gently stirred to obtain a constant
concentration throughout the length of the column and then allowed to
settle. The concentration profile as a function of height and time was
obtained by the y-ray attenuation method (Z, 11).
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In Fig. 1 the values of K, and D,, used in the linear and Burger model
are plotted against 3 for the case of the long column. The asterisks cor-
respond to the three values of K,,(9,) given in Table 1. It can be seen for this
example that the hydraulic conductivity (3 < 11.3) and diffusivity are
smaller in the Burger model than in the linear model. Comparing these
results to the experimental values of Smiles (6), it appears that the linear
model is a better approximation than the Burger model. In fact, a combina-
tion of the K, obtained here and from Smiles (6) could be a useful starting
representation for numerical models. It should be noted that the diffusivi-
ties used in the theoretical models come from the high concentration
end of the range.

Results for the three columns are shown in Figs. 2A, 2B, and 2C for
different times throughout the sedimentation process. Details on param-
eters are given in Table 1.

As we are summing easily calculable analytical functions, the computa-
tional time is very small indeed (typically 0.3 to 0.5 sec CP time on the
CSIRO CYBER 76 for each set of experiments shown in Fig. 2). However,
the number of terms required in the series solutions to obtain convergence
(Egs. 11a, 11b, 12a, 12b) is dependent on the time the experiment has
been running; for smaller times a larger number of terms are required,
or in the case of the Burger model the short-time asymptotics (Egs. 13a,
13b, 13c) were preferred.

Bearing in mind that we are approximating nonlinear expressions for

TABLE 1

Observed and Predicted Values of the Parameters in the Three Columns

Column length (Z,)

Short (0.35 m)

Medium (0.86 m)

Long (1.86 m)

G 13.2 12.6 11.3

K.(9,) 2.87 x 10~7 m/sec 2.18 x 10~7 m/sec 1.84 x 10~7 m/sec
Ve 3.1 3.1 3.1

Ie 5.5 5.9 4.6

M 0.0243 m 0.0637 m 0.151 m

Qw 0.167m 0411 m 0.97m

o 5.4 59 4.6

ko 3.7 x 107% m/sec 3.2 X 1078 m/sec 2.7 X 1078 m/sec
D, 2.0 X 1071 m?/sec 1.6 x 107° m?/sec 3.6 X 10712 m?/sec
9 5.1 5.8 4.5

ky 8.8 x 10~? m/sec 9.5 x 10~° m/sec 8.0 X 10-°% m/sec

8.8 x 10~ m?/sec

4.4 x 101! m?/sec

1.0 x 10~'° m?/sec
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Fic. 1. Plots of the hydraulic conductivity K, and diffusivity D, against

moisture ratio 4 from experimentally determined

values (6) and those derived in

the two models (linear and Burger) of this paper. The asterisks (*) correspond
to the values of K,,(9,) listed in Table 1. The range of values of -9 in the experi-
ments referred to in this paper is shown at the bottom of the diagram.
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the diffusivity and hydraulic conductivity by an “averaged” diffusivity
and a hydraulic conductivity which is either a linear or quadratic function
of moisture ratio in our models, the results are reasonable. This is not
so surprising because we are choosing K,(3,) exactly and the gravitational
component dominates the early parts of the sedimentation process.
Furthermore, the diffusivity is derived from the balance of forces in
the equilibrium profile; and provided the equilibrium concentration is
relatively constant throughout the profile, an “average” diffusivity will
be reasonable. Figure 1 confirms this claim as the value of the “averaged”
diffusivity is at the highly concentrated end of the range (i.e., low values
of 3).

As expected, for early times (first diagram in Fig. 2A and the first two
in 2B and 2C) both models predict the profile extremely well. However,
in the middle stages of the process the Burger model appears to be quanti-
tatively more accurate, but the linear model has qualitatively the correct
shape. This is due to the faster decrease in the hydraulic conductivity for
the Burger model while the diffusivity is held constant, hence the increase
in the concentration profile is spread out over a greater height because
of the balance between the gravitational and diffusive terms in Eq. (5a).

The models presented here are part of an initial study of the mechanics
of sedimenting colloidal particles. Although the models are useful, the
full nonlinear equations with experimentally determined diffusivities
and hydraulic conductivities will need to be solved (numerically) to as-
certain the full usefulness of this approach to modeling sedimentation.

SYMBOLS
D, diffusivity in Burger model
D, diffusivity in Lagrangian coordinates
Dy diffusivity in linear model

coefficient of conductivity in Burger model
hydraulic conductivity

hydraulic conductivity in Lagrangian coordinates
coefficient of conductivity in linear model
Lagrangian coordinate

total mass length of column

m/M, dimensionless Lagrangian coordinate length
volume of clear liquid at top

volume of clear liquid at top of the column at equilibrium
time

Dt/M?, nondimensional time
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v volume flux of water relative to particles
z  vertical spatial coordinate
yA initial length of column

Greek

Oy solution of transcendental equation

a,coto, + f =0
or
o, cota, + 6 =

(y. — DkoM/2D,, a nondimensional parameter
specific gravity of solid component

(3, — Dk (y. — DM/2D,, a dimensionless parameter
moisture ratio (volume of liquid/volume of solid)
equilibrium moisture ratio at base of column
parameter in hydraulic conductivity in Burger model
parameter in hydraulic conductivity in linear model
initial moisture ratio

used in Burger equation substitution

first term in short time expansion of ©

second term in short time expansion of @

1/(1 + &) concentration (volume of solid/total volume)
potential

potential to repulsive forces between particles

© & ™

=]

o

e lPlopree
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